On generalized moment matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized flat extension theorem for moment matrices

In this note we prove a generalization of the flat extension theorem of Curto and Fialkow (Memoirs of the American Mathematical Society, vol. 119. American Mathematical Society, Providence, 1996) for truncated moment matrices. It applies to moment matrices indexed by an arbitrary set of monomials and its border, assuming that this set is connected to 1. When formulated in a basis-free setting, ...

متن کامل

GENERALIZED REGULAR FUZZY MATRICES

In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.

متن کامل

On Generalized Transitive Matrices

Transitivity of generalized fuzzy matrices over a special type of semiring is considered. The semiring is called incline algebra which generalizes Boolean algebra, fuzzy algebra, and distributive lattice. This paper studies the transitive incline matrices in detail. The transitive closure of an incline matrix is studied, and the convergence for powers of transitive incline matrices is considere...

متن کامل

On generalized quadratic matrices

Abstract Extending an approach considered by Radjawi and Rosenthal (2002), we investigate the set of square matrices whose square equals a linear combination of the matrix itself and an idempotent matrix. Special attention is paid to the Moore-Penrose and group inverse of matrices belonging to this set. References: Radjavi, H. and P. Rosenthal (2002). On commutators of idempotents. Linear and M...

متن کامل

Very cleanness of generalized matrices

An element $a$ in a ring $R$ is very clean in case there exists‎ ‎an idempotent $ein R$ such that $ae = ea$ and either $a‎- ‎e$ or $a‎ + ‎e$ is invertible‎. ‎An element $a$ in a ring $R$ is very $J$-clean‎ ‎provided that there exists an idempotent $ein R$ such that $ae =‎ ‎ea$ and either $a-ein J(R)$ or $a‎ + ‎ein J(R)$‎. ‎Let $R$ be a‎ ‎local ring‎, ‎and let $sin C(R)$‎. ‎We prove that $Ain K_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2013

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2013-11782-x